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Abstract

The radial basis function (RBF) collocation techniques for the numerical solution of partial differential equation prob-
lems are increasingly popular in recent years thanks to their striking merits being inherently meshless, integration-free, and
highly accurate. However, the RBF-based methods have markedly been limited to handle isotropic problems due to the use
of the isotropic Euclidean distance. This paper makes the first attempt to use the geodesic distance with the RBF-based
boundary knot method (BKM) to solve 2D and 3D anisotropic Helmholtz-type and convection-diffusion problems. This
approach is mathematically simple and easy to implement, and spectral convergence is numerically observed for problems
under complex-shaped boundary. Numerical results show that the BKM based on the geodesic distance can produce highly
accurate solutions of anisotropic problems with a relatively small number of knots. This study provides a promising strat-
egy for the RBF-based methods to effectively solve anisotropic problems.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The function expressed in the Euclidean distance variable is usually termed a radial basis function (RBF) in
literature. This is because they are radially isotropic due to the rotational invariance, and have become de
facto the standard distance function of the most practical use today. For instance, in multivariate scattered
data processing, the RBF approach has now become the method of choice [13]. Since Kansa’s pioneering work
[18], the RBF has also increasingly been used to solve various partial differential equation (PDE) problems
numerically [12,17,29,30]. However, the RBF-based approaches have long been limited to isotropic PDE
problems due to the fact that the conventional RBFs are based on the isotropic Euclidean distance variable.

Anisotropic materials are ubiquitous in nature. Among known examples are crystals, wood, sedimentary
rocks, laminated sheets, fiber-reinforced composites, and thin films etc. Their various physical behaviors
are usually described by corresponding anisotropic partial differential equations, and the accurate numerical
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solution of these equations is imperative in a broad range of scientific and engineering applications. In this
regard, the traditional numerical methodology [24] is to transform an anisotropic problem into an isotropic
one, and as a byproduct of this transformation, the boundary conditions often become much more compli-
cated. Then the standard numerical solution techniques, e.g., FEM, FDM as well as the Euclidean distance
based RBF methods, are used to solve the transformed isotropic problems. An alternative strategy is to embed
the anisotropy in the numerical algorithm [26] and then solve the problem directly without using the transfor-
mation. In this study, we will use the latter strategy in the RBF-based boundary knot method (BKM) [11] to
solve anisotropic partial differential equation problems.

Our new approach is to replace the Euclidean distance with the anisotropic geodesic distance in the radial
basis function of the BKM [9]. This novel scheme is tested to the anisotropic Helmholtz-type and convection-
diffusion problems under complicated geometry, and its convergence is numerically investigated. To our best
knowledge, this paper makes the first attempt to use the geodesic distance with the RBF-based method to
solve the anisotropic partial differential equation problems. In Section 2, we give a brief introduction of the
BKM and then geodesic distance, followed in Section 3 by numerical results and discussions. Finally, Section
4 concludes this paper with some remarks based on numerical experiments results and analyses.
2. Anisotropic distance, RBF and boundary knot method

Let X be an open bounded domain in Rd, where d is the dimensionality of the space, and C = oX represents
its boundary. Without loss of generality, we consider the Helmholtz equation under anisotropic media
Xd

i¼1

Xd

j¼1

kij
o2uðxÞ
oxioxj

þ k2u ¼ f ðxÞ; x ¼ ðx1; x2; . . . ; xdÞ 2 X; ð1Þ
where K={kij} is the constant material tensor assumed to be positive-definite. For example, K is given in 3D
cases by
K ¼
k11 k12 k13

k21 k22 k23

k31 k32 k33

8><
>:

9>=
>;.
It is well-known that the smaller the determinant of kij, the more asymmetric and anisotropic are the field and
flux vectors, and consequently, the more difficult it is to get the accurate numerical solution. The constant k is
a real number. In case that the k is purely imaginary, the equation is also known as the modified Helmholtz
equation, and it can be rewritten as
Xd

i¼1

Xd

j¼1

kij
o2uðxÞ
oxioxj

� k2u ¼ f ðxÞ; x ¼ ðx1; x2; . . . ; xdÞ 2 X ð2Þ
so as to eliminate the imaginary unit. In this study, we also consider anisotropic convection-diffusion equation
Xd

i¼1

Xd

j¼1

kij
o2uðxÞ
oxioxj

þ v � ru� g2u ¼ f ðxÞ; x ¼ ðx1; x2; . . . ; xdÞ 2 X; ð3Þ
where v is a velocity vector. The governing Eqs. (1)–(3) are typically subjected to the following boundary
conditions:
uðxÞ ¼ gðxÞ; x 2 C1;

qðxÞ ¼ hðxÞ; x 2 C2;

�
ð4Þ
where C1 and C2 are the two disjointed parts constituting the boundary C. The flux q(x) through the boundary
C1 is given by
qðxÞ ¼ ou
ovþ

; ð5Þ
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where v is the normal vector to the boundary C, and
ou
ovþ
¼
Xd

i¼1

Xd

j¼1

kij cosðv; xiÞ
ou
oxj

; ð6Þ
where cos(v,xi) are the directional cosine of the outward normal vector v to the boundary C.
In the RBF-based BKM framework, the anisotropic problems are solved in a two-step approach. Firstly,

we evaluate an approximate particular solution by means of the dual reciprocity method (DRM) and RBFs
[22], and secondly, its homogeneous solution is approximated via the nonsingular general solution formula-
tion. Namely, the solution u(x) is split by
uðxÞ ¼ uhðxÞ þ upðxÞ; ð7Þ

where uh(x) and up(x) are the homogeneous and particular solutions, respectively. The latter satisfies the gov-
erning equation but not necessarily the boundary conditions. To evaluate the particular solution, we approx-
imate the source term f(x) by
f ðxÞ ¼
XL

k¼1

ckuðRkÞ; ð8Þ
where ck are unknown coefficients, / denotes a radial basis function, and L is the number of knots. In this
study, the standard Euclidean distance rk = ix � xki2 is replaced by the geodesic distance Rk defined between
x = (x1,x2, . . . ,xd) and xk = (xk1,xk2, . . . ,xkd) as below [9]:
R2
k ¼

Xd

i¼1

Xd

j¼1

kijðxi � xkiÞðxj � xkjÞ ¼ ðx� xkÞTK�1ðx� xkÞ. ð9Þ
K�1 = {kij} is the inverse of the anisotropic coefficient matrix K. In case of isotropic media, K is an identity
matrix and the geodesic distance is reduced to the Euclidean distance. It is noted that the RBF / used in the
DRM can either be isotropic based on the Euclidean distance or an anisotropic geodesic distance. In case of
the conditionally positive definite RBF /, a polynomial term need be included in the above summation (8) to
guarantee the non-singularity of the RBF interpolation matrix. By collocating Eq. (8) at all the nodes, we can
uniquely determine
c ¼ A�1
/ f; ð10Þ
where A/ is an interpolation matrix, c = (c1,c2, . . . ,cL)T is the unknown coefficient vector. Once c is deter-
mined, the particular solution up(x) can be obtained by using the DRM
upðxÞ ¼
XL

k¼1

ckwðRkÞ; ð11Þ
where the RBF w is related to the governing differential operator. For a detailed account of the use of RBFs in
the DRM and the derivation of w for a given /, we refer to Refs. [4,15]. Another simple approach is that we
first choose w and accordingly determine / through a simple differentiation process [11].

In the second step, the homogeneous solution uh(x) is obtained by using boundary type techniques such as the
method of fundamental solutions (MFS) [14] and boundary knot method [11]. The basic idea of the BKM is to
approximate the solution of a partial differential equation by a linear combination of nonsingular general solu-
tions instead of singular fundamental solutions in the MFS. Thus it avoids the controversial requirement in the
MFS of constructing a fictitious boundary outside the physical domain. The BKM has been well-established for
the isotropic problems [5–7,10,11]. But like other RBF-based numerical techniques, the BKM has never success-
fully been applied to anisotropic problems.

The nonsingular general solution u#(x) of the anisotropic Helmholtz equation in Rd is given by
u#ðxÞ ¼ 1

2p
k

2pR

� �d=2�1

J d=2�1ðkRÞ; d P 2; ð12Þ
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where Jm is the Bessel function of the first kind of order m, and R is the geodesic distance between the source
and response points. Similarly, the nonsingular general solution of the anisotropic modified Helmholtz equa-
tion in Rd is given by
u#ðxÞ ¼ 1

2p
k

2pR

� �d=2�1

Id=2�1ðkRÞ; d P 2; ð13Þ
where Im is the modified Bessel function of the first kind of order m. Analogously, the nonsingular general
solution of the anisotropic convection-diffusion equation is given by
u#ðxÞ ¼ 1

2p
k

2pR

� �d=2�1

e�
v�K�1r

2 Id=2�1ðgRÞ; d P 2; ð14Þ
where r is the distance vector between the response and source points, and g is defined as
g ¼ k2 þ v � K�1v

4

� �1=2

. ð15Þ
The general solutions u#(x) of the 2D and 3D Helmholtz operator are given by
u#ðxÞ ¼
J 0ðkRÞ; x 2 R2;
sin kR

R ; x 2 R3:

(
ð16Þ
For the modified Helmholtz operator we have
u#ðxÞ ¼
I0ðkRÞ; x 2 R2;
sinh kR

R ; x 2 R3;

(
ð17Þ
where sinh is the hyperbolic sine function. And for the convection-diffusion operator we have
u#ðxÞ ¼
I0ðgRÞe� v�K�1r

2
; x 2 R2;

sinh gR
R e� v�K�1r

2
; x 2 R3:

(
ð18Þ
In the BKM, the solution uh(x) of the homogeneous problem is approximated by
uhðxÞ ¼
XN

j¼1

aju#ðx� xjÞ; x 2 X; ð19Þ
where xj are collocation points on the boundary, and aj unknown coefficients.
The approximate solution uh(x) satisfies the governing partial differential equation but does not necessarily

satisfy the boundary conditions, which can be enforced by collocating boundary conditions at {xi}. Finally we
get the BKM discretization system of linear equations
PN
j¼1

aju#ðxi � xjÞ ¼ gðxiÞ � upðxiÞ; xi 2 C1;

PN
j¼1

aj
ou#ðxi�xjÞ

ovþ ¼ hðxiÞ � oupðxiÞ
ovþ ; xi 2 C2.

8>>><
>>>:

ð20Þ
In a short form, Eq. (20) is rewritten in a matrix equation form
Aa ¼ b; ð21Þ

where a = (a1,a2, . . . ,aN)T, b is a known data vector, and A={Aij} is the interpolation matrix with entries Aij

defined by
Aij ¼
u#ðxi � xjÞ; xi 2 C1;

ou#ðxi�xjÞ
ovþ ; xi 2 C2.

(
ð22Þ
By solving the matrix Eq. (21), we get the values of the expansion coefficients aj. Then it is straightforward to
evaluate the numerical solution u(x) at any interior points by
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uðxÞ ¼ upðxÞ þ uhðxÞ ¼
XL

k¼1

ckwðRkÞ þ
XN

j¼1

aju#ðx� xjÞ. ð23Þ
3. Numerical results and discussion

In this section the convergence of the present anisotropic BKM scheme is numerically examined, and its
application to anisotropic problems under complicated geometry is illustrated. Since the DRM in conjunction
with the RBFs is well-established in the literature [19,22] for inhomogeneous problems, we consider only homo-
geneous problems in the present study.

To investigate the convergence of the BKM, we first calculate homogeneous Helmholtz-type and convection-
diffusion problems with the two simple geometries: a circular domain X ¼ fðx1; x2Þjx2

1 þ x2
2 < 1g and a square

domain X = {(x1,x2)j � 1 < x1,x2 < 1}. To measure the accuracy of the approximation, the average relative
error rerr(u), average absolute error aerr(u) and maximum error merr(u) defined as below are employed
rerrðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
j¼1

ðuj � ~ujÞ2
s

PL
j¼1

ðujÞ2
; ð24aÞ

aerrðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

j¼1

ðuj � ~ujÞ2
vuut ; ð24bÞ

merrðuÞ ¼ max
j
juj � ~ujj; ð24cÞ
where uj and ~uj are respectively the analytical and numerical solutions at the node xj 2 X, and L is the total
number of internal nodes of interest, 10,000 nodes for the circular and square domains, 10,903 nodes for the
irregular 2D geometry, 18,494 nodes for the 3D problems, and these nodes are distributed uniformly.

Unless otherwise specified, the 2D test cases under complicated geometry have the same configuration of
irregular geometry shown in Fig. 1(a) with the Neumann boundary condition specified at x = 4 boundary
and the Dirichlet boundary condition at the rest of the boundary, where the small blank circles represent
boundary knots. It is noted that this configuration involves corners, sharp notches, and interior elliptic cut-
outs. These interior and exterior boundary shapes are deliberately designed to verify the robustness of the
anisotropic BKM in solving arbitrary complicated geometric problems. For 3D cases, the configuration is dis-
played in Fig. 1(b), which is a cube centered at the origin with side-length 2, including a cutout sphere of radius
0.5. Both the Helmholtz-type and convection-diffusion problems are tested. Tables 1–8 show calculated
results, where N is the total number of boundary knots with the BKM.
Fig. 1. Configurations of the 2D and 3D complicated geometries.



Table 1
Numerical results for 2D Helmholtz problem (26a)

N rerr(u) aerr(u) merr(u)

16 4.1975e�3 1.7665e�3 1.0473e�2
20 8.8884e�6 3.7406e�6 3.2423e�5
24 1.9240e�6 8.0970e�7 1.0151e�5

Table 2
Numerical results for 2D Helmholtz problem (26b) with l = 200

N rerr(u) aerr(u) merr(u)

480 9.4926e�3 9.4394e�3 8.8930e�2
500 1.6940e�5 1.6845e�5 1.4471e�4
520 9.0839e�7 9.0329e�7 3.2356e�6

Table 3
Numerical results for 2D Helmholtz problem (26b) with l = 500

N rerr(u) aerr(u) merr(u)

1200 2.6618e�2 2.6511e�2 2.0579e�1
1230 4.4999e�3 4.4819e�3 1.1839e�1
1240 8.7123e�6 8.6774e�6 2.2138e�4
1250 8.0788e�6 8.0464e�6 6.3026e�5
1280 1.5261e�6 1.5200e�6 5.8993e�6

Table 4
Relative errors of 2D modified Helmholtz problem (28b)

N rerr(u) aerr(u) merr(u)

11 3.9949e�4 9.0231e�4 3.4859e�3
16 8.6635e�7 1.9568e�6 8.4574e�6
20 5.3930e�8 1.2181e�7 1.1100e�6

Table 5
Relative errors of 2D convection-diffusion problem (30)

L rerr(u) aerr(u) merr(u)

11 1.6517e�3 2.5522e�3 1.3992e�2
16 3.0256e�6 4.6751e�6 2.9927e�5
24 8.8356e�8 1.3653e�7 1.6875e�6

Table 6
Numerical results for 3D Helmholtz problem with analytical solution (35a)

N rerr(u) aerr(u) merr(u)

18 4.0971e�2 2.7303e�2 1.1422e�1
31 1.7083e�3 1.1384e�3 7.5938e�3
61 2.0742e�5 1.3822e�5 8.1649e�5

105 9.1679e�8 6.1093e�8 6.3598e�7
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3.1. 2D Helmholtz problems

The Helmholtz equation is frequently encountered in various fields of physical and engineering applications
involving wave propagation and vibration phenomena, e.g., acoustics cavity, radiation, scattering, vibration
[27,31–33], and electromagnetic field. We consider a 2D anisotropic Helmholtz equation



Table 8
Numerical results for 3D convection-diffusion problem with analytical solution (35c)

N rerr(u) aerr(u) merr(u)

18 8.2633e�3 3.1583e�2 1.8244e�1
30 1.6544e�4 6.3234e�4 5.9769e�3
61 1.3347e�6 5.1015e�6 4.9674e�5

105 5.9913e�8 2.2900e�7 2.5709e�6

Table 7
Numerical results for 3D modified Helmholtz problem with analytical solution (35b)

N rerr(u) aerr(u) merr(u)

16 9.3815e�3 3.5857e�2 1.9925e�1
29 7.0620e�4 2.6992e�3 3.4374e�2
61 3.9933e�6 1.5263e�5 1.2401e�4

105 2.0666e�7 7.8987e�7 6.2330e�6

Fig. 2.
by (26
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o
2u

ox2
1

þ o
2u

ox1ox2

þ o
2u

ox2
2

þ k2u ¼ 0; ðx1; x2Þ 2 X. ð25Þ
Here the constant tensor kij is taken as kij = 1/2 + 1/2d ij, where dij is the Kronecker symbol. To illustrate the
accuracy, we consider the problems with the following analytical solutions
uðxÞ ¼ sin

ffiffiffi
3
p

2
x1

 !
sin x2 �

x1

2

� �
; ð26aÞ

uðxÞ ¼ sin

ffiffiffi
3
p

2
lx1

 !
þ cos l x2 �

x1

2

� �� �
. ð26bÞ
The wave number k of the nonsingular general solution is
ffiffiffiffiffiffiffiffi
3=2

p
for the analytical solutions (26a), and

ffiffiffi
3
p

l=2
for (26b). The Dirichlet and Neumann boundary conditions can be evaluated from the corresponding analyt-
ical solutions.

Fig. 2(a) displays the average relative error curves for a Dirichlet anisotropic problem with analytical solu-
tion (26a) on the circular and square domains. It is observed that the BKM solutions converge rapidly. The
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a).
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convergence rate for the Dirichlet Helmholtz problem is 12.9 for the circular and 9.8 for the square domain,
respectively, prior to the minimum relative error value. Fig. 2(b) displays the average relative error for the
anisotropic Helmholtz problem with the same analytical solution but subjected to a mix-type boundary con-
dition, where the Neumann boundary condition is specified on the lower-half boundary of the circular domain
and x2 = ±1 boundary of the square domain. It is observed that the convergence rate of the mixed boundary
value problem is slightly more rapid than the Dirichlet cases, being 15.1 for the circular and 10.2 for square
domains.

To investigate the anisotropic Helmholtz problems with the moderate wave numbers, we consider the
Dirichlet problem with analytical solution (26b). Fig. 3(a) and (b) shows the average relative error curves
for l = 20 and l = 50 cases, respectively. It is observed from Fig. 3 that the higher wave number requires more
boundary knots to achieve accurate results. It is interesting to note that for test case (26b) the higher the wave
number, the larger the convergence rate. For example, the convergence rate for Helmholtz Dirichlet problem
with l = 20 is 41.8 on the circular domain and 37.6 on the square domain, while it is 64.3 and 48.2 for either
case, respectively when l = 50. The same observations persist for other distinct values of l. For the sake of
brevity, we do not present those results here.

To illustrate the wave property of the Helmholtz problem, Fig. 4 displays the solution profile and the abso-
lute error surfaces in the square domain of the Helmholtz problem (26b) with l = 20 using 64, 80 and 120
boundary knots, respectively, where the error surfaces were yielded at 100 · 100 knots uniformly-spacing over
the square. The solution accuracy is improved with the increase of boundary knots. Fig. 4(c) shows that errors
around the corners are far pronounced in 80 knots BKM solutions.

We can see from Figs. 2 and 3 that the average relative error decreases steadily with the increasing bound-
ary knots in the BKM, and then starts to oscillate when the solution reaches accuracy of certain degree. And
the culprit for this phenomena may be ill-conditioning of the BKM interpolation matrix. The variation of the
condition number (Cond) in terms of the knot number is shown in Fig. 5(a) for the Dirichlet Helmholtz prob-
lem. It is seen that the condition number increases steadily with the knot number, and then abruptly level off.
If holding the knot number unchanged, the condition number decreases with the increasing wave number.
Therefore, more knots in the BKM do not necessarily cause severe ill-conditioning for problems having a high
wave number. The condition number for the mixed problem is displayed in Fig. 5(b) and behaves similarly as
in the Dirichlet problem.

For a large number of knots, the BKM interpolation matrix equation tends to be severely ill-conditioned.
However, the large condition number appears not necessarily to deteriorate the numerical results seriously.
This paradox is also noted in various applications of the other RBF-based methods [12,14]. For large-scale
problems, the domain decomposition method [3,20] could be used to reduce the condition number, and the
fast multipole method [2] or hierarchical matrices are also promising in conjunction with the RBF-based
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Fig. 3. Average relative error curves for Dirichlet Helmholtz problems (26b) with (a) l = 20 and (b) l = 50.



Fig. 4. Solution profile (a) and absolute error surfaces (b–d) of the anisotropic Dirichlet Helmholtz problem with wavenumber l = 20
having accurate solution (26b), where the BKM boundary knots are 64 for (b), 80 for (c) and 120 for (d), respectively.

Fig. 5. The variation of the condition number against the knot number for: (a) Dirichlet problem on the circular domain and (b) mixed
problem with analytical solution (26a).
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methods. In case of noisy data of inverse problems, the ill-conditioning could pose a great numerical chal-
lenge, and various regularization methods [16] may be employed to stabilize the solution process.

We also test the geodesic distance based BKM to the anisotropic Helmholtz problem under complicated
geometry with the analytical solutions (26a). Table 1 displays the corresponding numerical results with
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Fig. 6. (a) The average relative error curve of the numerical solution for(26a); (b) the absolute error surface for(28b)withl= 20 obtained
by the isotropic MQ RBF with 2116 collocation points.B. Jin, W. Chen / Journal of Computational Physics 215 (2006) 614…629623
various numbers of knots. We can see that the present anisotropic BKM is stable, accurate and rapidly con-
vergent. It is also observed that the BKM results with only 16 boundary knots are quite accurate for cases
under physical domain having complicated-shaped exterior and interior boundaries. Many other numerical
experiments were also performed in the preparation of this paper, and the same observations were found. It
should be pointed out that the solutions on irregular domains are smooth. In the case that the solution has
singularities, the numerical procedure could be far more complicated [21], and this is beyond the scope of the
present study.

High wave number problems often pose a big challenge for accurate numerical solutions. For the finite ele-
ment method to achieve an acceptable level of accuracy, more than 10 elements per wavelength should be used
[25], which makes it very expensive for high wavenumber problems. To illustrate the potentiality of the pro-
posed method for this kind problems, we present numerical results of the Helmholtz Dirichlet problem (26b)
on a circular domain with l = 200 and l = 500 in Tables 2 and 3, respectively. From the numerical results
presented, the fast convergence is observed, and the proposed method is promising.

Until now we consider only the numerical results by the proposed anisotropic method. To illustrate its mer-
its and demerits versus the traditional isotropic distance based methods, Fig. 6(a) summarizes the numerical
results of the Helmholtz Dirichlet problem (28a) on the square by the well-known isotropic multiquadric
(MQ) RBF method, where c is the shape parameter in the MQ. Both methods produce comparable numerical
results, provided that the shape parameter in the MQ is appropriately chosen. It’s observed that the accuracy
of the MQ RBF method depends significantly on the shape parameter, and an inappropriate choice of the
shape parameter would deteriorate the accuracy significantly. The optimal shape parameter in the MQ is very
difficult to determine a priori and remains a perplexing problem, while the geodesic BKM has no such a shape
parameter problem.

As the wave number increases, the isotropic distance method has some difficulty in obtaining accurate
results. Fig. 6(b) displays the error surface of the Helmholtz Dirichlet problem (26b) with l = 20 on the square
domain by the MQ with 2116 uniformly-distributed collocation points. Here the shape parameter c is taken to
be 0.5, which is determined via a trial error procedure. The accuracy of the numerical results is
rerr(u) = 9.5831e � 3, aerr(u) = 9.6136e � 3 and merr(u) = 2.9595e � 2, whereas the present geodesic distance
method using 64 nodes has rerr(u) = 3.1024e � 3, aerr(u) = 3.1123e � 3 and merr(u) = 2.5698e � 2. Therefore,
the result by the isotropic MQ RBF method is slightly inferior to that by the present method using a relatively
much smaller number of nodes. A close comparison of Fig. 6(b) with Fig. 4(b) also supports this argument.
And our method incorporates the characteristic kernel solution of the problem of interest and reduces the
dimensionality by one. From the above numerical results, we may conclude that the anisotropic BKM method
is superior to the MQ RBF method based on isotropic basis functions for the homogeneous high wave number
problems.
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3.2. 2D modified Helmholtz problems

The modified Helmholtz equation is used to model heat conduction [21,28] as well as in chemical reaction
engineering, often referred to as the diffusion-reaction equation [1]. Consider a 2D anisotropic modified Helm-
holtz problem
5
o

2u
ox2

1

þ 4
o

2u
ox1ox2

þ o
2u

ox2
2

� k2u ¼ 0; ðx1; x2Þ 2 X; ð27Þ
where k11 = 5, k12 = 2 and k22 = 1 consist in the constant tensor coefficient matrix kij. Consider the two test
cases with the analytical solutions:
uðxÞ ¼ exp � 3x1

5
þ 2x2

� �
; ð28aÞ

uðxÞ ¼ exp � 3x1

10
þ x2

2

� �
. ð28bÞ
k is taken to be 1 for the case (28a) and 1=
ffiffiffiffiffi
10
p

for (28b), respectively. The Dirichlet and Neumann boundary
conditions can be evaluated accordingly. The relative error against the knot numbers for test case (28a) are
illustrated in Fig. 7(a). It is found that the anisotropic BKM converges stably and quickly, and the conver-
gence rate is 15.8 and 12.6 for the circular and square domains, respectively. Furthermore, Fig. 7(b) shows
that the BKM performs as well for the mixed-type boundary conditions, and the convergence rate is almost
identical as in the Dirichlet case.

Fig. 8 displays the analytical solution profile of the Dirichlet problem on the square domain and the error
surfaces of the BKM approximate solutions using 8, 12 and 20 boundary knots, where the error surfaces were
yielded at 100 · 100 knots uniformly-spaced over the square. It is interesting to note that the error surfaces
with 8 and 12 boundary knots are smooth, while that with 20 boundary knots is more roughly distributed.

Table 4 presents the numerical results for test case (28b) under the 2D complex-geometry. It is seen that 11
boundary knots make accurate solutions, and 16 knots suffice striking accuracy.

3.3. 2D convection-diffusion problems

The numerical solution of the convection-diffusion problem is often a difficult task largely because of trou-
blesome convection term. Ref. [23] claims that the BEM outperforms the FEM and FDM in solving convec-
tion-diffusion problems because the convection terms have been inherently embedded in the fundamental
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Fig. 7. Average relative error curves for the modified Helmholtz: (a) Dirichlet and (b) mixed problem (28a), respectively.



Fig. 8. (a) the solution profile of the modified Helmholtz problem (28a) and its error surfaces of the numerical solution using (b) 8, (c) 12
and (d) 20 boundary knots, respectively.
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solution of the convection-diffusion operator, so is the case for the present anisotropic BKM [10]. For a clear
illustration, we consider an anisotropic convection-diffusion problem
o
2u

ox2
1

þ o
2u

ox1ox2

þ o
2u

ox2
2

þ v � ru ¼ 0; ðx1; x2Þ 2 X; ð29Þ
where k11 = k22 = 1 and k12 = 1/2 in the constant tensor kij, and the velocity v is given by
v ¼
ffiffiffi
3
p

2
þ 3þ

ffiffiffi
3
p

4

 !T

.

The analytical solution of the test case is given by
uðxÞ ¼ exp �
ffiffiffi
3
p

2
x1

 !
þ exp

x1

2
� x2

� �
. ð30Þ
Fig. 9(a) shows the relative error against the knot number for the above test case (30). As in the previous
Helmholtz cases, it is observed that the anisotropic BKM converges stably and quickly, and the convergence
rate is 13.2 for the circular domain and 10.1 for the square domain. Fig. 9(b) further shows that the aniso-
tropic BKM performs equally well for the mixed-type boundary conditions, and the convergence rate is com-
parable with that of the Dirichlet case.

Table 5 presents the numerical results for test case (29) in the 2D complicated geometry. It is noted that 11
boundary knots could achieve good accuracy, and 24 knots suffice very high accuracy up to eight significant
digits. The outstanding performances are because the BKM with the anisotropic convection-diffusion nonsin-
gular solution could well capture the convective effects of the governing equation.
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3.4. Stability with respect to anisotropy

It is well known that the difficulty of anisotropic problems depends crucially on the determinant of the con-
stant material tensor K. Generally speaking, the smaller the determinant det(K), the more difficult is the aniso-
tropic problem. To investigate the effect of anisotropy on the accuracy, we first consider an orthotropic case,
where the cross-terms kij (i 6¼ j) vanish. In particular we consider the following equation:
l
o2u
ox2

1

þ o2u
ox2

2

þ k2u ¼ 0; ðx1; x2Þ 2 X; ð31Þ
where k11 = l,k12 = 1, l is a number dictating the anisotropy of the problem, and X is the circular domain.
Therefore, the determinant det(K) is determined solely by the parameter l. The Dirichlet condition is pre-
scribed on oX such that its solution is given by
uðxÞ ¼ sin
x1ffiffiffi
l
p
� �

þ sinðx2Þ. ð32Þ
The wave number k of the problem is kept 1 to investigate anisotropic influence of the value of l on the
numerical solution. We experimented the Helmholtz problem (32) with det(K) in the range [1 · 10�3, 1 ·
106], and the results are summarized in Fig. 10(a).

From Fig. 10(a), it is observed that as the determinant det(K) increases from 1 · 10�3 to 1 · 106, the accu-
racy of the numerical results increases steadily and then at some point start fluctuations for larger values of
det(K). This is attributed to the ill-conditioning of the BKM interpolation matrix as discussed and analyzed
before. It is stressed that the smaller the determinant, the greater the anisotropy. We see from Fig. 10(a) that
more nodes are required in greater anisotropy to obtain accurate solutions. Smaller l leads to smaller det(K)
and greater anisotropy and also a higher frequency component in the first term of the solution (32). It is
known that high-frequency problems require relatively more knots for accurate solutions. In this case, the
wavenumber is in fact not determined by k alone. And the effective wavenumber involves both k and l.
And high anisotropy causes high wave number and increases the difficulty of numerical solutions.

Next we consider anisotropic problem with non-diagonal terms.
o
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ox2
1

þ 2l
o

2u
ox1ox2

þ o
2u

ox2
2

þ k2u ¼ 0; ðx1; x2Þ 2 X; ð33Þ
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where the constant tensor k11 = k22 = 1, and k12 = l. The parameter l controls the degree of anisotropy of the
problem, and we investigate the sensitivity of the numerical results with respect to anisotropy. The analytical
solution is given by
uðxÞ ¼ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
x1

� �
sin x2 � lx1ð Þ; ð34Þ
where the wave number k is taken to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2l2

p
.

The numerical results for the Helmholtz problem (34) on the circular domain are shown in Fig. 10(b). And
we can see that the accuracy is almost independent of the determinant of the constant tensor when it is in the
range [2 · 10�4,1].

3.5. 3D Helmholtz, modified Helmholtz and convection-diffusion problems

Three-dimensional problems are usually not easy to deal with by the traditional numerical techniques. This
dimensional effect is often dubbed the curse of dimensionality and is one of the greatest barriers in higher-
dimension computing. The following examples are intended to verify numerically the accuracy and efficiency
of the present anisotropic BKM solution of 3D problems. The analytical solutions of our test cases are given
by
uðxÞ ¼ sin

ffiffiffi
3
p

2
x1

 !
þ sin x2 �

x1

2

� �
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4
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; ð35aÞ
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2
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2
p

4
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 !
; ð35bÞ
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ffiffiffi
3
p

2
x1

 !
þ exp

x1

2
� x2

� �
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2
p

4
ðx1 þ x2 � 3x3Þ

 !
; ð35cÞ
for the Helmholtz, modified Helmholtz and convection-diffusion equations, respectively. The constant tensor
kij is taken as kij = 1/2 + 1/2dij.. k in the nonsingular general solution is taken

ffiffiffi
3
p

=2,
ffiffiffi
3
p

=2 and zero for the
Helmholtz, modified Helmholtz and convection-diffusion equations, respectively. The velocity vector v for
the convection-diffusion problem is
v ¼
ffiffiffi
3
p

2
;
3þ

ffiffiffi
3
p

4
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3
p

4

 !T
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The numerical results for test case (35a) are displayed in Tables 6. The anisotropic BKM is found to work as
well for this 3D problem as in the previous 2D cases. With a few dozen points, the geodesic distance based
BKM produces remarkably accurate results. The similar observations also appear in test cases (35b) and
(35c), shown in Tables 7 and 8, respectively. It should be noted that 29 knots yield the accuracy of seven sig-
nificant digits for the 3D convection-diffusion problems. This indicates that the anisotropic BKM may be a
competitive alternative to tackle high-dimensional anisotropic problems effectively.

It is stressed that compared with the 2D problems, no extra coding effort is required for the 3D cases, except
of a single line of the different definition of the distance variable. The BKM demands neither domain nor
boundary grid generations, a considerable saving compared with mesh-based methods, where high quality
meshing of 3D complicated geometry could be computationally very expensive.

4. Concluding remarks

The extension of the RBF-based numerical techniques to the anisotropic problems is practically significant
in many real-world applications, where anisotropic media are pronouncedly present. The BKM can be con-
sidered a particular type of RBF-based methods where the general solution RBF is used to evaluate the homo-
geneous solution and the DRM and RBF calculates the particular solution. In this study, the geodesic distance
replaces the standard isotropic Euclidean distance in the BKM to solve the anisotropic Helmholtz, diffusion,
and convection-diffusion problems under 2D and 3D complicated geometries. The numerical results confirm
that this strategy works successfully for the tested cases. This will encourage the use of the other problem-
dependent definition of distance [8] in the RBF methods for engineering problems having strong features such
as a preferred direction. The geodesic distance-based Kansa’s method, a domain type RBF technique, is now
under investigation for anisotropic problems.
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